Standard Consistency Test
For finding out initial setting time, final setting time and soundness of cement, and strength a parameter known as standard consistency has to be used. It is pertinent at this stage
to describe the procedure of conducting standard consistency test. The standard consistency of a cement paste is defined as that consistency which will permit a Vicat plunger having 10 mm diameter and 50 mm length to penetrate to a depth of 33-35 mm from the top of the mould shown in below fig. The appartus is called Vicat Appartus. This appartus is used to find out the percentage of water required to produce a cement paste of standard consistency.
The standard consistency of the cement paste is some time called normal consistency (CPNC). The following procedures is adopted to find out standard consistency. Take about 500 gms of cement and prepare a paste with a weighed quantity of water (say 24 per cent by weight of cement) for the first trial. The paste must be prepared in a standard manner and filled into the Vicat mould within 3-5 minutes. After completely filling the mould, shake the mould to expel air. A standard plunger, 10 mm diameter, 50 mm long is attached and brought down to touch the surface of the paste in the test block and quickly released allowing it to sink into the paste by its own weight. Take the reading by noting the depth of penetration of the plunger. Conduct a 2nd trial (say with 25 per cent of water) and find out the depth of penetration of plunger. Similarly, conduct trials with higher and higher water/cement ratios till such time the plunger penetrates for a depth of 33-35 mm from the top. That particular
percentage of water which allows the plunger to penetrate only to a depth of 33-35 mm from the top is known as the percentage of water required to produce a cement paste of standard consistency. This percentage is usually denoted as ‘P’. The test is required to be conducted in a constant temperature (27° + 2°C) and constant humidity (90%).
Setting time of Concrete
Setting Time:
Initial setting time and final setting time are the two important physical properties of cement. Initial setting time is the time taken by the cement from adding of water to the starting of losing its plasticity. Final setting time is the time lapsed from adding of the water to complete loss of plasticity. Vicat apparatus is used for finding the setting times. Vicat apparatus consists of a movable rod to which any one of the three needles shown in figure can be attached. An indicator is attached to the movable rod. A vicat mould is associated with this apparatus which is in the form of split cylinder.
Before finding initial and final setting time it is necessary to determine water to be added to get
standard consistency. For this 300 gms of cement is mixed with about 30% water and cement paste
prepared is filled in the mould which rests on non porous plate. The plunger is attached to the movable rod of vicat apparatus and gently lowered to touch the paste in the mould. Then the plunger is allowed to move freely. If the penetration is 5 mm to 7 mm from the bottom of the mould, then cement is having standard consistency. If not, experiment is repeated with different proportion of water fill water required for standard consistency is found. Then the tests for initial and final setting times can be carried out as explained below:
Initial Setting Time:
300 gms of cement is thoroughly mixed with 0.85 times the water for standard consistency and vicat mould is completely filled and top surface is levelled. 1 mm square needle is fixed to the rod and gently placed over the paste. Then it is freely allowed to penetrate. In the beginning the needle penetrates the paste completely. As time lapses the paste start losing its plasticity and offers resistance to penetration. When needle can penetrate up to 5 to 7 mm above bottom of the paste experiment is stopped and time lapsed between the addition of water and end if the experiment is noted as initial setting time.
Final Setting Time.
The square needle is replaced with annular collar. Experiment is continued by allowing this needle to freely move after gently touching the surface of the paste. Time lapsed between the addition of water and the mark of needle but not of annular ring is found on the paste. This time is noted as final setting time.
Thanks for the best content
ReplyDeleteGREAT WORK
IMPRESSIVE!!!
REALLY APPRECIATE YOUR WORK!!!
Nice Structure India
This comment has been removed by the author.
ReplyDeleteAerated concrete is a lightweight engineering material, which is produced by introducing air bubbles into normal concrete. Their properties depend on their internal structures, and also vary tremendously with age, curing, and also not forgetting the ratio of constituent materials. This paper reports the compressive strength and microstructural changes in two types of aerated concrete mix, exposed to various curing conditions. Concrete Lincoln
ReplyDeleteThis comment has been removed by the author.
ReplyDelete